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Abstract. Few years ago, application of the mean field Bethe scheme on a given system was shown to
produce a systematic change of the system intrinsic symmetry. For instance, once applied on a ferromagnet,
individual spins are no more equivalent. Accordingly a new loopwise mean field theory was designed to both
go beyond the one site Weiss approach and yet preserve the initial Hamitonian symmetry. This loopwise
scheme is applied here to solve the triangular antiferromagnetic Ising model. It is found to yield Wannier’s
exact result of no ordering at non-zero temperature. No adjustable parameter is used. Simultaneously
a non-zero critical temperature is obtained for the triangular Ising ferromagnet. This simple mean field
scheme opens a new way to tackle random systems.

PACS. 75.25.+z Spin arrangements in magnetically ordered materials (including neutron and
spin-polarized electron studies, synchrotron-source X-ray scattering, etc.) – 05.50.+q Lattice theory and
statistics (Ising, Potts, etc.) – 75.50.-y Studies of specific magnetic materials

1 Introduction

Collective phenomena are rather difficult to solve exactly.
Up to date, only some one dimensional problems and the
square zero field Ising model allow an exact analytical so-
lution [1]. To compensate this situation, a rich family of
approximate methods has been developed over the last
hundred years. The most powerful one being the renor-
malization group techniques [2].

At start was the Mean Field Theory (MFT). It offers a
very practical and simple tool to solve most collective phe-
nomena [1]. While it is completely universal and generic,
associated quantitative results are unusually poor. In par-
ticular critical temperatures and exponents are rather far
from exact estimates [2]. Sometimes even the order of the
transition may be wrong like for the instance in the Potts
model [3].

The crudest and most simple version of MFT is the
1907 Weiss pioneer model [4]. It reduces the infinite num-
ber of fluctuating degrees of freedom down to one, Si,
which couples to homogeneous mean field degrees of free-
dom m. The thermodynamics is then solved calculating
the associated partition function from which the self-
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consistent equation 〈Si〉 = m (where 〈...〉 means thermal
average) is derived.

In the case of Ising systems with q nearest neighbor
interactions, Weiss theory gives 〈Si〉 = tan h(Kqm) where
K ≡ βJ , J is the exchange coupling, β ≡ 1

kBT
, kB is the

Boltzmann constant and T is the temperature. Associated
critical temperature is Kc = 1

q . At odd with the known
exact result a phase transition is obtained at d = 1 (q =
2) [1].

From there it took 28 years before Bethe improved
the Weiss model [5]. Instead of just one fluctuating spin,
he considers a cluster of fluctuating spins with a central
one and its nearest neighbors. The main achievement of
the Bethe approximation is to yield the exact result of
no ordering at one dimension. However, critical temper-
atures given by Kc = tanh−1( 1

q−1 ), are not much bet-
ter than from Weiss model. Critical exponents stay un-
changed. Latter on, using computer capabilities, larger
size fluctuating clusters have been considered to obtain
better critical temperatures [6].

However, a few years ago the Bethe cluster scheme was
showed to systematically change the system intrinsic sym-
metry [7]. Starting from a system with equivalent sites like
for instance a square Ising Ferromagnet, it ends up mak-
ing individual sites inequivalent. At this stage it is worth
to stress that an approximation can be very crude and yet
not wrong as long as it preserves the intrinsic symmetry of
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Fig. 1. The loopwise scheme in the square case: s1, s2, s3, s4 are the fluctuating spins while m1, m2, m3, m4 are mean field
averages.

the problem. Otherwise it does change its physics. We are
not talking here about a symmetry breaking of the higher
phase symmetry as it occurs in a usual phase transition
but of a change of the symmetry of the disorder phase
itself.

On this basis the challenge was to find out if it is indeed
possible to build a MFT which considers more than two
fluctuating spins, yet preserving the initial lattice sym-
metry. Indeed, Galam showed it is possible using a loop-
wise scheme (LWS) which articulates on finite-size one-
dimensional closed loops [7]. Paving the whole lattice with
these loops, half of them are kept fluctuating while the
other half is averaged out with mean field degrees of free-
dom. The scheme is illustrated in Figure 1 for the square
lattice.

The LWS is a generic model. It was applied to a large
class of ferromagnetic systems on Bravais lattices [7,8]. It
reproduces the exact result of no ordering at one dimen-
sion. Moreover, for Ising hypercubes, it exhibits a lower
critical dimension dl for long range ordering which is equal
to the Golden number dl = 1+

√
5

2 . However critical expo-
nents are unchanged from Weiss model.

On this basis, to determine the range of validity of this
new LWS, it is of interest to check if it can yield new prop-
erties which are out of reach of previous mean field theories
like frustration. For instance, when applied to the fully-
frustrated triangular Ising antiferromagnet (TIA) most
MFT predict a transition at a non-zero temperature while

an earlier exact argument by Wannier proved no symme-
try breaking occurs at any non-zero temperature [9].

Few years ago, to bridge this difficulty Netz and Berker
introduced the hard spin recipe [10]. It combines a mean
field calculation with some Monte Carlo sampling. When
applied to the TIA, it yields the correct result of no or-
dering at T 6= 0. Later Banavar et al. suggested that the
Monte Carlo sampling could be reproduced by expanding
all possible products of the 6 nearest neighbors spins of
the “exact spin” but it was then disproved by Netz and
Berker [11].

More recently focusing on the TIA, Monroe approxi-
mated the triangular lattice with a Husimi tree built up of
triangles [12]. It then allows to include properly frustra-
tion to get a correct phase diagram. However an Huzimi
tree is not a triangular lattice.

In this paper we apply the very simple LWS to the
fully frustrated triangular Ising antiferromagnet (TIA).
The Wannier exact result is recovered [10] and a transition
is found at T = 0. The following of the paper is organized
as follows. Section 2 deals with the frustration effect. In
Section 3 the LWS is presented. The TIA is solved analyt-
ically in Section 4 using the LWS. In Section 5 using the
same equations, the triangular Ising ferromagnet (TIF) is
also solved. Some possible applications are mentioned in
the last section.



S. Galam and P.-V. Koseleff: Solving the triangular Ising antiferromagnet by simple mean field 151

B B

B

A
s1

1
2

31

2 1 3

3

2

1

2

1

2

3

1 3

2

3s2

s3

B B
B

Fig. 2. The loopwise scheme in the triangular case: s1, s2, s3 are the fluctuating spins while 1, 2, 3 represent mean field averages
m1, m2, m3.

2 The frustration effect

Frustration is a major ingredient of many physical sys-
tems. It results from the impossibility to minimize simul-
taneously all pair interactions. In turn it makes the ground
state highly degenerate [9]. Frustration effects may arise
from either quenched disorder or topological constraints.

Random bond spin glasses are the archetype of frus-
tration produced by disorder. The random distribution of
quenched competing interactions generates analytical dif-
ficulties in calculating the thermodynamic functions. In
particular to average the disorder over the logarithm of
the partition function is yet a real theoretical challenge.
Usual mean field treatments failed to incorporate simul-
taneously frustration and quenched randomness.

On this basis the TIA has the advantage of being
fully frustrated without any disorder making the study
of frustration itself more easy. It is therefore the perfect
candidate to check the ability of a new scheme to deal
with frustration. In addition an earlier exact argument by
Wannier [10] has proved the absence of symmetry breaking
at any non-zero temperature for this system. At contrast
most mean field like approaches produce wrongly some
non-zero critical temperature. Along this line, Netz and
Berker recipe [10] with Banavar et al. reformulation [11]
stand at odd.

3 The loopwise scheme (LWS)

The LWS was introduced few years ago to overpass the
symmetry inconsistency of the Bethe scheme, yet retaining
its physical feature of including several fluctuating degrees
of freedom [7].

To implement the LWS on any lattice requires to sin-
gle out two identical interpenetrating sublattices. Each el-
ement being composed from a closed compact loop of de-
grees of freedom. The shape and number of these degrees
of freedom are determined by the lattice topology. It is
the smallest closed linear loop. For instance in the square
case (Fig. 1) it includes 4 spins while for the triangular
lattice (Fig. 2) 3 spins are involved. One of the sublattice
is fluctuating and the other one is mean field.

Both sublattices are coupled via nearest neighbor in-
teractions. The problem is thus mapped onto decou-
pled one-dimensional closed fluctuating chains in external
fields. The fields originate from the coupling to the mean
field loops. At this stage an exact analytical calculation
can be performed whatever the chain size is. It is worth
to note no adjustable parameter is used.

The LWS is a generic model. It was applied to a large
class of ferromagnetic systems [7,8]. Being built on using
closed linear loops it should be well adapted to embody
frustration effects [9].
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4 Solving the triangular Ising antiferromagnet

We now apply the LWS to the fully frustrated TIA. We
first partition the triangular lattice into two interpene-
trated triangular sublattices A and B. Thermal fluctua-
tions are then ignored on the B-sublattice while preserved
within the A-sublattice. These triangles are closed loops
with no center (see Fig. 2).

All nearest neighbor (nn) plaquettes of a A-plaquette
are B plaquettes, and vice versa. Therefore, on a given
plaquette each spin has two nn spins of the same species
(within the same plaquette), and four nn spins of the other
species (belong respectively to three different nn plaque-
ttes).

Above breaking of the initial lattice symmetry makes
the partition function calculable by decoupling the fluctu-
ating triangles. The A-sublattice degrees of freedom can
thus be integrated out in the partition function. The ini-
tial lattice symmetry will be restored latter using the usual
mean field self-consistent constraint (Eq. (4) below).

4.1 Setting the equations

Given an A plaquette, we label the 3 fluctuating
spins S1, S2, S3. We then introduce 3 magnetizations
m1, m2, m3 for corresponding B plaquettes (Fig. 2). The
Hamiltonian then writes

H = −J(S1S2 + S2S3 + S3S1)− δJ (S1(m2 +m3)
+S2(m3 +m1) + S3(m1 +m2)) , (1)

where δ = 2 accounts for the coupling to the B mean field
plaquettes. From equation (1) the partition function is

Z =
∑
Si=±1

exp{−βH}, (2)

where i = 1, 2, 3. The three thermal averages of
S1, S2, S3 are given by

〈Si〉 =
1
Z

∑
Sj=±1

Si exp{−βH} · (3)

We can thus write the associated three self-consistent
equations

〈Si〉 = mi. (4)

4.2 Looking for minima

Indeed we are looking for minima of the free-energy which
results from the partition function Z. It is then worth to
stress not all solutions of equation (4) are minima. A cri-
terium to make equation (4) a derivative of a function is
to require its cross derivatives with respect to the mi to
be equal, i.e.,

∂

∂mj
〈Si〉 =

∂

∂mi
〈Sj〉, (5)

for i, j = 1, 2, 3.

Writing S = (〈S1〉, 〈S2〉, 〈S3〉), and m = (m1,m2,m3),
the problem is now to find a set S = {m ∈ R3; S(m) =
m}, such that there exists a function F obeying to

(m− S(m)) = dF (m) = 0 . (6)

To solve it, we rewrite thermal averages 〈Si〉 as

〈Si〉 =
1
Z

∑
si=±1

sif(s1, s2, s3) , (7)

where

f(s1, s2, s3) = exp {K(s1s2 + s1s3 + s2s3)
+δK(m1(s2 + s3) +m2(s1 + s3) +m3(s1 + s2))} · (8)

Let σ ∈ Σ3 be a permutation. Considering σ(m) =
(mσ(1),mσ(2),mσ(3)) we have

σ(Z(m)) = Z(σ(m)),Z(−m) = −Z(m) . (9)

Writing X = expK and xi = exp δKmi, 〈Si〉 are rational
fractions in (xi, X) and we have

Z =
D

XT 2
3

, (10)

D = (1 + T 2
3 )X4 + T2 + T1T3, (11)

〈Si〉 = 1− 2
xi(T1 + T3 − xi) +X4

D
, (12)

where

T1 = x1 + x2 + x3,

T2 = x1x2 + x1x3 + x2x3,

T3 = x1x2x3,

(13)

are the elementary symmetric functions. Note D > 0, X >
0, xi > 0 and |〈Si〉| < 1.

Solving first the K = 0 case, we get immediately
〈Si〉 = 0 and the solution is mi = 0. We can then pro-
ceed assuming K 6= 0.

4.3 The most general solution m1 6= m2 6= m3

We can now solve the equations, starting with the most
general case m1 6= m2 6= m3. Equation (5) is equivalent
to

∂〈Si〉
∂xj

∂xj
∂mj

=
∂〈Sj〉
∂xi

∂xi
∂mi

, (14)
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x1 − x2

)(
X4x2

3x
3
2x

3
1 − x2

1x
2
2 + 2X4x2

1x
2
2x

2
3 + x2

3x2x1

− 2X4x1x2 −X4
)

= 0,(
x1 − x3

)(
X4x2

2x
3
3x

3
1 − x2

3x
2
1 + 2X4x2

1x
2
2x

2
3 + x2

2x3x1

− 2X4x3x1 −X4
)

= 0,(
x2 − x3

)(
X4x2

1x
3
2x

3
3 − x2

2x
2
3 + 2X4x2

1x
2
2x

2
3 + x2

1x3x2

− 2X4x3x2 −X4
)

= 0. (15)

Suppose first, three different values of mi. It makes
x1 6= x2 6= x3 since K 6= 0, which in turn, solving equa-
tion (15) implies

T1 = −T2

T3

2T 2
3 − 1

T 2
3 − 2

, (16)

and,

X4 =
T2

T 2
3 − 2

· (17)

In conclusion

D = (1 + T 2
3 )X4 + T2 + T1T3,= 0 (18)

which is impossible since D > 0. Therefore, we can con-
clude that out of the three mi, two must be equal. We
then suppose m1 = m2 6= m3.

4.4 The solution exhibits the symmetry
m1 = m2 6= m3

From the above calculation we restrict the minima search
to the subspace of solution m1 = m2 6= m3. It implies
x1 = x2 and

〈S1〉 − 〈S3〉 = −2
x2(1 + x1x3)

D
(x1 − x3), (19)

so it makes

exp(δKm1)− exp(δKm3)
m1 −m3

< 0, (20)

which in turn makes K < 0. Let us define P ≡ x2x3 and
N ≡ x2

2x3, it gives

X4 =
P 3 −N2

P (N2P + 2N2 − 2P − 1)
, (21)

and

〈S1〉+ 〈S2〉+ 〈S3〉 =
P − 1
P + 1

· (22)

If P = 1 or N = 1 then m1 = m2 = m3 = 0 which is
not possible since we assumed above m1 = m2 6= m3. So

(P − 1)(N − 1) 6= 0. On the other hand, as K < 0, we
must have

1−N
m1 +m2 +m3

> 0, (23)

which makes (P − 1)(N − 1) < 0 but equation (21) gives

X4 =
1
P

P 3 −N2

(1− P ) + (2 + P )(N2 − 1)
< 0, (24)

which is impossible. In conclusion all the three mi must be
equal. On this basis we now assume m1 = m2 = m3 = m.

4.5 The solution is fully symmetrical
with m1 = m2 = m3 = m

We have now proved the minima belong to the solution
subspace defined by the symmetry condition m1 = m2 =
m3 = m. On this basis, writing Y = exp(δKm), equa-
tion (4) becomes

m = fK(m) =

(
Y 4 − 1

) ((
Y 8 + Y 4 + 1

)
X4 + Y 4

)
(Y 4 + 1) ((Y 8 − Y 4 + 1)X4 + 3Y 4)

,

(25)

so we have either m = 0, or both

Y 4 − 1
m

=
e4δKm − 1

m
> 0, (26)

and K > 0. We also deduce that |fK(m)| < 1.
As fK(−m) = −fK(m) it is enough to solve the case

m ≥ 0. We thus obtain X > 1, Y > 1,K > 0, or m = 0.
Computing the derivative gives

f ′K(m) =

8δK
Y 4
(
3Y 8X8 +

(
Y 16 + 4Y 12 + 4Y 4 + 1

)
X4 + 3Y 8

)
(Y 4 + 1)2 ((Y 8 − Y 4 + 1)X4 + 3Y 4)2 ,

(27)

f ′′K(m) =

− 32δ2K2 Y 4(Y 4 − 1)
(Y 4 + 1)3 ((Y 8 − Y 4 + 1)X4 + 3Y 4)3 gK(m),

(28)

where

gK(m) = (Y 4 + 1)6 + (2Y 8 + 7Y 4 + 2)(Y 4 + 1)4(X4 − 1)

+ (Y 16 + 7Y 12 + 21Y 8 + 7Y 4 + 1)(Y 4 + 1)2

× (X4 − 1)2 + 9Y 8(Y 8 + Y 4 + 1)(X4 − 1)3 > 0. (29)

Therefore when m ≥ 0, in addition to 0 ≤ fK(m) < 1,
we have f ′K(m) > 0 and f ′′K(m) < 0. These properties
allow to conclude that:

1. If f ′K(0) ≤ 1, 0 is the only fixed point of fK ;
2. If f ′K(0) > 1, fK has exactly three fixed points, 0, b,−b

where −1 < b < 1.
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Computing then

f ′K(0) = 2δK
3 exp(4K) + 1
exp(4K) + 3

, (30)

it appears to be an increasing function of K. It makes

f ′K(0) = 1, (31)

to have a unique solution K0. Moreover, if K < K0 then
f ′K(0) < 1 and if K > K0 then f ′K(0) > 1.

4.6 The actual minima

Looking for minima of FK where

dFK(m)
dm

= m− fK(m) , (32)

depending on the value of K, two cases appear quite nat-
urally for K > K0 and K ≤ K0. It shows the triangular
Ising both anti and ferromagnets are solved simultane-
ously.

4.6.1 First case: K > K0

In this case, fK(m) = m has 2 solutionsm = 0 andm2 = a
where a is a positive function of K. Having

F ′′K(m = 0) = 1− f ′K(m = 0) < 0 , (33)

m = 0 is a maximum for FK . In parallel

F ′′K(m =
√
a) = F ′′K(m = −

√
a) = 1− f ′K(m1) > 0 .

(34)

Thereforem =
√
a and m = −√a are minima of FK . They

correspond to the triangular Ising ferromagnet symmetry
breaking at low temperatures where K0 is the associated
critical temperature.

4.6.2 Second case: K ≤ K0

Then the unique solution of fK(m) = m is m = 0. There,

F ′′K(0) = 1− f ′K(0) > 0, (35)

so it is a minimum for FK . This case embodies indeed two
different physical situations.

1. The first range of positive K, 0 ≤ K ≤ K0, corre-
sponds to the disordered phase of above triangular
Ising ferromagnet.

2. At the same time, the range of negativeK (K ≤ 0) cor-
responds to the triangular Ising antiferromagnet. For
this system the unique solution is alwaysm = 0 for the
whole range of temperatures T > 0. It means no order-
ing occurs for the TIA at any non zero temperature.
The Wannier argument is thus recovered [10].

4.7 A transition at T = 0

From the exact Wannier solution the triangular Ising an-
tiferromagnet is known to exhibit a phase transition at
T = 0 to an ordered phase with broken symmetry among
the three sublattices. Accordingly we now examine what
our scheme yields in the case K →∞. To solve the equa-
tions it is more convenient to rewrite Z and 〈Si〉 in terms
of T = tanh(K) and ti = tanh(δKmi). We first note
|〈Si〉| ≤ 1 since |sinh(x)| ≤ cosh(x). Then, once the mi

are fixed within [−1, 1], the condition K →∞ makes the
ti to go to either one of the three values −1, 0, 1.

Computing < Si > in terms of ti and K for each one of
the 27 possible limit values of the ti set, we find 7 solutions
for the mi which are respectively

mi = 0, i = 1, 2, 3 (36)

and

mi = mj = −mk = ±1. (37)

To determine the actual minimum at T = 0 we
compute the associated values for free energy F =
−kBT logZ. The first solution m1 = m2 = m3 = 0 yields

F = − J
K

log((6 + 2 exp(4K)) exp(−K)) −→
K→−∞

1 (38)

and for m1 = m2 = 1,m3 = −1 we get

F = − J
K

log (2 exp(−K) cos(2δK)(3 + exp(4K)))

−→
K→−∞

1− 2δ, (39)

making the solution m1 = m2 = 1,m3 = −1 the mini-
mum. However from equations (38, 39) the two free en-
ergies of the ordered/disordered phases are expected to
become equal only at some non zero temperature, a little
bit above zero temperature, that is quite close to a critical
point. It is coherent to the known result of a phase tran-
sition for the triangular Ising antiferromagnet at T = 0 in
agreement with the previous improved mean field theory
by Netz and Berker [10].

5 The triangular Ising ferromagnet

Coming back to the TIF, we can go further and evaluate
the value of the critical temperature K0. At this stage it is
worth to notice that all the above results are independent
of the value of δ which accounts for the coupling to the
mean field loops.

Since 1 ≤ 3 exp(4K) + 1
exp(4K) + 3

≤ 3, when K > 0, from

equation (31) we obtain

1
6δ
≤ K0 ≤

1
2δ
· (40)
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In addition, in the limit of large δ, we get

K0 =
1
2δ
− 2
δ2

+
3

4δ3
− 29

24
1
δ4

+O
(

1
δ5

)
· (41)

To get a numerical estimate of the ferromagnetic critical
temperature K0 requires to have the δ value.

From equation (1) a straightforward arithmetic leads
to δ = q−2

2 = 2 since 2 nn are treated exactly within the
fluctuating loop out of the 6 triangular nn. Plugging then,
δ = 2 into equation (31) yields K0 = 0.1772. It is rather
far from the exact numerical estimate Ke

C = 0.2746 [14].
In comparison, a usual mean field gives K0 = 1

6 = 0.1667,
while for Bethe it is K0 = tanh−1(1

5 ) = 0.2027.

6 Conclusion

In conclusion, we have showed that the very simple
and generic mean field loopwise scheme, proposed by
Galam [7], is able to solve exactly the triangular Ising anti-
ferromagnet. Without any adjustable parameter it recov-
ers the exact Wannier argument of no ordering at T 6= 0
and a transition at T = 0 [10]. From the same equations
the triangular Ising ferromagnet is also solved simultane-
ously. A phase transition is obtained into a ferromagnetic
phase at a non-zero critical temperature.

Moreover, contrary to the Bethe scheme, it preserves
the initial lattice symmetry, yet going beyond the one-
site Weiss approach. It also yields no transition for Ising
hypercubes at d = 1 with a lower critical dimension of
dl = 1+

√
5

2 .

The loopwise scheme should allow a new solving of a
very large class of physical systems, in particular random
systems with frustration. For future work we consider to
apply it first to the triangular Ising antiferromagnet in
a finite field and then on the stacked 3D version of it.
Application to the Random Field Ising model should also
be done.

We would like to thank Y. Shapir and R. Netz for stimulating
discussion on the manuscript.
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